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Numerical solutions are obtained for the equations of a uniform compressible boundary layer with variable
physical properties in the vicinity of a stagnation point with different principal curvatures in the presence of
an injected gas with the same properties as the incident flow. The results of the numerical solutions are ap-
proximated for the heat flux in the form of a relation that depends on the variation of the product of viscosity
and density up across the boundary layer and on the ratio of the principal radii of curvature.

Using the concepts of effective diffusion coefficients in a multicomponent boundary layer, previously intro-
duced by the author in [1], and the generalized analogy between heat and mass transfer in the presence of
injection, together with the numerical solutions obtained, it is always possible, even without additional
solutions of the boundary-layer equations, to derive final formulas for the hear fluxes in a flow of dissociat-
ing gas of arbitrary chemical composition, provided that we make the fundamental assumption that all re-
combination reactions take place at the surface.

By way of example, formulas are given for the heat transfer to the surface of a body from dissociating air,
regarded as a five -component mixture of the gases O, N, NO, Oy, Np, and from a dissociating mixture of
carbon dioxide and molecular nitrogen of arbitrary composition, regarded as an eleven-component mixture
of the gases O, N, C, NO, Cp, Oy, Ny, CO, CN, Cj, COy.

In the process of obtaining and analyzing these solutions it was found that, in computing the heat flux, a
multicomponent mixture can be replaced with an effective binary mixture with a single diffusion coefficient
only when the former can be divided into two groups of components with different (but similar) diffusion
properties. In this case the concentrations of one group at the surface must be zero, while the diffusion
flows of the second group at the surface are expressible, using the laws of mass conservation of the chemical
elements, in terms of the diffusion flows of the first. Then the single effecrive diffusion coefficient is the
binary diffusion coefficient D(A, M), where A relates to one group of components and M to the other.

In view of the small amount of NO(c(NO) < 0, 05), the diffusion transport of energy in dissociated air
may be described with the aid of a single binary diffusion coefficient D(A, M)(A = O, N, M = O,, Ny, NO).
However even in the case of complete dissociation into O and C atoms at the outer edge of the boundary
layer, the diffusion transport of energy in dissociated carbon dioxide can not be described accurately
enough by means of a2 model of a binary mixture with a single diffusion coefficient, since the diffusion
propetties of the O and C atoms are distinctly different.

§ 1. Consider the laminar boundary layer in the neighborhood of a double curvature stagnation point when a
body is placed in a steady flow of a compressible perfect gas. In particular, this is essentially the problem of the bound-
ary layer in the vicinity of the stagnation point of an axisymmetric body moving at an angle of attack. If we take co-
ordinates along the lines of curvature of the surface as x and z, and direct the y axis along the normal to this surface
(Fig. 1), the system of equations of the boundary layer will be

;f;(pu) + %(pv) + 5 () =0 a1

o(ogs +o5 Twi) =este (o) Be=(G)er, 0

| %% - (1.3)
p(ug% + vg—;i + wvgfzi’) =pB°%z + a% (u %) y B= (a;:e)xrzzo (1.4)
p(u%+v%§+w%)=%(ip%) (1.5)

p = pRT (1.6)

where u, v, w, are the projections of the velocity vector on the x, y, and z axes, p pressure, p density, T temperature, A
heat conductivity, g viscosity, Ug, We velocity components of the inviscid flow in the x and 2z directions, respectively,
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and p the specific heat capacity of the gas at constant pressure.

In deriving this system of equations, apart from the usual assumptions of boundary layer theory, we made certain
simplifying assurnptions connected with the fact that the flow is investigated closerothe stagnation point: Tysmallrerny:
associated with the dissipation and action of pressure forces were dropped fromtheenergyequation (1.5) 2)inEus. (1.2)
and (1.4) we used the relarion

p/ P, 4 1/2 (3“1:{3 -} ;322:2) == ¢onst .
With the same assumptions, the boundary conditions for system (1.1)-(1. 6) in the presence of injection independent
of the coordinates x and z will be

u=U,=B.2,w=1V, =Bz, h = ke when y— o0, {1.7)

u=1w=20,v=10vy>0,h=hywhen y=0. (1.%)
§ 2. We shall seek a solution of the boundary problem (1. 1)-(1. 8) in the form:

weBarf ), oo =— 0, (0] o], h= RO ey

Y
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) = Bz = R - = ] = 5
w=Bag’ (1), = v, % o W Ve= 5 fiope
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where the subscript 0 relates to conditions at the body surface, and the subscript e to conditions at the outer edge of the
boundary layer. The continuity equation is then identically satisfied. Substituting (2.1) in (1.2), (1.4), (1.5) and
boundary conditions (1.7), (1.8), we get:

{ry + 4+ =59, [ = pp/pePo - (2.2)

(19" 4+ (J + 9) 9" = ¢"*— k0, k=8:/Bx . (2.3)

(L0) +U+@o =0  o=7 (2.9

0 0) = 0. B8(0)=6,. F(0) =0 (0)=0[a=———=2"), 5
FO)+00 =<0, 8(0)=0, /(0=¢(0)=0( VMPO) (2.5)
f () =10(c0) =1, § (o0) =k . (2.6)

a system of eighth-order ordinary differential equations (2.2)-(2.4) with a family of boundary conditions (2.5). However,
it is easy to see that boundary problem (2.2)-(2.5) permits the following one-parameter group of transformationss:

J—7+ 4, p—o—4 (2.7
which enables us to reduce the order of system (2.2)-(2.4) by one. For this purpose we introduce the following functions:
A =M, LO=7®, «am=9¢m  eO=¢"
0, (n)=0(m), B (n) =06, Yy =7+ oM (2.8)

Then problem (2. 2)-(2. 6) can bereduced to a basic system of seventh-order ordinary dif -
ferential equations with a family of boundary conditions (o = const)

fi' = s Jo=1 /2= 00— (') /el

0 =@  Qo=1[pF— K0, — (I + P) pe] (2.9)
0, =0, O =—I(Hcp)b, VYV =/t

_ H0)=¢: (0 =0, $(0)=a<0, 0,(0)="08

Fig. 1. fr(o0) =0;(c0) =1,  qu(o0)=Fk 2.10)

The case k = 0 corresponds to flow near a stagnation line (plane case) and then ¢ = 0; when k = 1 we get flow near
a stagnation point (axisymmetric case) and then f= ¢ . 1f the coordinate x corresponds to the greater principal curvature,
then 0 =k = 1,

The problem (2. 2) - (2. 6) has been formulated and numerically solved by Howarth [2] for 64 = 1 (incompressible
flow)and [ = 1,& = 0. Reshotko [3] has analyzed the problem for 6y « 1and [ = 1, @ = 0, when the right sides of
Egs. (2.2) and (2. 3) can be neglected and Blasius equations are obtained for the functions f V14 k= 9 ]/m We
have numerically integrated the more general problem (2. 9), (2. 10) on a BESM -2 computer, using the standard progran:
for solving systems of ordinary differential equations by the Adams inctliod with automatic selection of the increment to
a given accuracy. In the process of solving the problem, the parameters f(0), @y (©), 0, (0) were selected so as to
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satisfy the conditions at infinity. The accuracy achieved was 10~*, The computations were taken to n = n,=4. The
choice of parameters was automated. Calculations showed that for n_ = 4 allthe functions go out to their asymptotics,

N = 3 4 6 8
/7 (0)=0.55641714  0.55641022  0.55641018  0.556 410 14
/7 (0)=0.24935488  0.24935227  0.24935222  0.24935218
0 (0)= 0.33358260  0.33357121  0.33357120  0.33357118

Computations were performed for I =1 and for the function I = pp/pype: the viscosity coefficient y was calculated
from Sutherland’s formula. The parameters k, Og, 9, § = S/Te, where S is Sutherland's constant, were varied,

Altogether about 200 variants were analyzed. The results are given in Tables 1 and 2. From these tables it follows
that the dependence of 0'(0) on k is almost linear.

TABLE 1

=1 =07, =07

77 0) l * (0) o (0)
a 8, k J— S
o =0.71 G=1 '5:0.71 ’ o=1 s=0.7 l o=1
0 0.60%9 | 0.64%9 | O 0 0.4391 | 0.5087
0.25 | 0.8565 | 0.6945 | 0.1459 | 0.1507 | 0.4%61 | 0.5578
0 0.50 | 0.7008 | 0.7422 | 0.3235 | 0.3478 | 0.5292 | 0.6006
0.75 | 0.7433 | 0.7%84 | 0.5423 | 0.6507 | 0.5703 | 0.6561
1.0 0.7837 | 0.8227 | 0.7837 | 0.8227 | 0.6093 | 0.6919
0 0.9369 | 0.9547 | © 0 0.2362 | 0.2710
0.25 | 0.9652 | 0.9%72 | 0.1751 | 0.1771 | 0.2578 | 0.2920
0 0.5 0.50 | 0.9957 | 1.0565 | 0.4176 | 0.4453 | 0.2793 | 0.3220
0.75 | 1.0271 | 1.0413 | 0.7147 | 0.75%1 | 0.3005 | 0.3675
1.0 1.0587 | 1.0761 | 1.0587 | 1.076t | 0.3210 | 0.3666
0 1.2326 | 1.2326 | © 0 0 0
0.25 | 1.2476 | 1.2476 | 0.2013 | 0.2013 | © 0
1.0 0.50 | 1.2669 | 1.2669 | 0.4990 | 0.4990 | © 0
0.75 | 1.2%87 | 1.2837 | 0.8732 | 0.8732 | 0 0
1.0 1.3119 | 1.3119 | 1.3119 | 1.3119 | © 0
0 0.2985 | 0.3080 | 0 0 0.2117 | 0.2033
0.25 | 0.3439 | 0.353¢ | 0.08941] 0.07103| 0.2555 | 0.2481
0 0.50 0.3%34 0.3949 0.1717 0.1772 0.2936 0.2917
0.75 0.4235 0.4403 0.3038 0.3151 0.3312 0.3355
1.0 0.4624 0.4%16 0.4624 0.4816 0.3686 0.3779
0 0.6614 | 0.6889 | O 0 0.1303 | 0.1290
0.25 | 0.6%38 | n.A%98 | 0.1034 | 0.1244 | 0.1490 | 0.1484
—0.5 | 0.5 0.50 | 0.7095 | 0,7166 | 0.2728 | 0.2757 | 0.1632 | 0.1699
0.75 | 0.7374 | 0.7458 | 0.4962 | 0.5018 | 0.1880 | 0.1921
1.0 0.7662 | 0.7753 | 0.7862 | 0.7753 | 0.2076 | 0.2144
0 0.9692 | 0.9692 | 0 0 0 0
0.25 | 0.9796 | 0.9796 | 0.1319 | 0.1319 | 0 0
1.0 0.50 { 0.9950 | 0.9950 | 0.3603 | 0.3603 | O 0
0.75 | 1.0135 | 1.0134 | 0.6649 | 0.6649 | 0O 0
1.0 1.0335 | 1.0339 | 1.0339 | 1.0339 | O 0
0 0.0794 | 0.0576 | © 0 0.0544 | 0.0258
0.25 | 0.12029| 0.0995%| 0.01974| 0.1727 | 0.09165| 0.05402
0 0.50 | 0.1429 | 0.12612| 0.05%07| 0.05240| 0.1117 | 0.07362
0.75 | 0.1714 | 0.1654 | 0.1186 | 0.1116 | 0.1379 | 0.1007
1.0 0.2030 | 0.1966 | 0.2030 | 0.1966 | 0.1676 | 0.1320
0 0.4555 | 0.4520 | © 0 0.05577| 0.0413
0.25 | 0.4701 | 0.4663 | 0.05373! 0.05347| 0.06957| 0.05279
— 0.5 0.50 | 0.4873 | 0.4849 | 0.1650 | 0.1649 | 0.08312] 0.0567
0.75 | 0.50%2 | 0.5074 | 0.3260 | 0.3257 | 0.09393| 0.08303
1.0 0.5312 | 0.5318 | 0.5312 | 0.5318 | 0.1156 | 0.1002
0 0.7566 | 0.7566 | 0 0 0 0
0.25 | 0.7625 | 0.7625 | 0.03149| 0.08149] 0 0
1.0 0.50 | 0.7733 | 0.7733 | 0.2526 | 0.2526 | ©O 0
0.75 | 0.7872 | 0.7%72 | 0.496% | 0.4988 | 0O 0
1.0 0.8035 | 0.8035 ! 0.8035 | 0.8035 | 0 0

The derivative of the dimensionless temperarure (enthalpy) 6'(0), required for computing the heat flux, can be ap-
proximated, on the basis of these calculations, in the forms

4
££2=ame+ammegﬂmwmk+am 2 (1 +0.200) (2. 11)
el /* la'
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6" (9)

g (0)=———

1—0’

0,7<5\1 s

<

(2. 11

cont, )

Note that a more exact approximation of the last (second degree with respect to o) term of (2.11)givesinthe plane
case: 0.213« for o= 0.7 and 0,303 for o = 1. Therefore formula (2.11) gives more accurate values for o close to 0. 7.
In general, formula (2, 11) gives a deviation of not more than 3-4% from the numerical solutions for o] € 0,5 and
6; > 0.3~0.5, For —a ~ 1and 6 ~ 0,1 the discrepancy may amount to 10%.

§ 8. Using the results of the preceding'section and the concept of effecrive coefficients of diffusion in a multi-
component mixture, together with the generalized analogy between heat and mass transfer coefficients [1], it is possible
to construct a method of deriving formulas for the specific heat fluxes from a dissociated frozen boundary layer to an

ideally catalytic surface when a body is exposed to a flow of gas of arbitrary chemical composition with injection of a

gas with properties close to those of the incident flow.

TABLE 2
%1, o=0.71
1 (0) %" (0} 6 {0)
« 9' k
8 =0.2 s =0.02 8==0.2 § == 0.02 s = 0.2 § = 0,02
0 0.6908 0.4583 0 0 0.4455 0.2836
0.25 0.7374 0.4867 0.1588 0.1028 0.4908 0.3121
0.05 0.50 | 0.7831 0.5149 0.3607 0.2346 0.5347 0.3398
0.75 | 0.8269 0.5421 0.5988 0.3908 0.5764 0.3662
1.0 0.8688 0.5684 0.8688 0.5684 0.6139 0.3913
0 0.9114 0.8898 0 0 0.2255 0.2171
0.25 | 0.9371 0.9138 0.1684 0.1631 0.2455 0.2363
0 0.5 0.50 | 0.9655 0.9404 0.4029 0.3910 0.2662 0.2661
0.75 0.9949 0.9681 0.6908 0.6711 0.2865 0.2756
" 1.0 1.0244 0.9961 1.0244 0.9961 0.3060 0.2944
0 1.2326 1.2326 0 0 0 0
0.25 1.2476 1.2476 0.2012 0.2012 0 0
1.0 0.50 { 1.2668 1.2668 0.4990 0.4990 0 0
0.75 | 1.2886 1.2886 0.8732 0.8732 0 0
1.0 | 1.312 1.312 1.312 1.312 0 0
0 0.3976 0.1950 0 0 0.2459 0.09704
0.25 | 0.4327 0.2150 0.083621 0.03608| 0.2783 0.1173
0.05 0.50 0.4728 0.2380 0.2068 0.09704 | 0.3157 0.1400
0.75 0.5138 0.2614 0.3647 0.1810 0.3542 0.1630
1.0 0.5540 0.2846 0.5540 0.2846 0.3920 0.1862
0 0.6442 0.6284 0 0 0.1231 0.1158
0.25 0.6628 0.6451 0.0982 0.09392| 0.1387 0.1307
—0.5 0.5 0.50 | 0.6863 0.6667 0.2642 0.2517 0.15698 | 0.1483
0.75 | 0.7118 0.6904 0.4777 0.4612 0.4759 0.1664
1.0 0.7384 0.7152 0.7384 | '0,7152 0.1946 0.1844
0 0.9692 0.9692 0 0 0 0
0.25 0.9797 0.9797 0.1320 0.1320 0 0
1 0.50 | 0.9950 0.9950 0.3603 0.3603 0 0
0.75 1-01358 | 1.01358 | 0.6650 0.6650 0 0
1.0 1.03347| 1.03317¢ 1.03317] 1.03317 0 0
0 0.1882 0.1134 0 0 0.1077 0.04298
0.25 0.2054 0.1247 0.03209! 0,01644| 0.1225 0.05365
0.05 0.50 | . 0.2308 0.1415 0.09134| 0.05173| 0.1449 0.07007
0.75 | 0.2619 0.1604 0.1792 0.1066 0.17297 1 0.08882
1.0 0.2955 0.1798 0.2955 0.1798 0.2041 0.1082
0 0.4482 0.4395 0 0 0.05381 1 0.04893
0.25 | 0.4577 0.4477 0.05065| 0.04831| 0.06229! 0.05692
—1 0.5 0.50 | 0.4729 0.4612 0.1578 0.1520 0.07510, 0.06901
0.75 1 0.4916 0.4780 0.3135 0.3034 0.03007{ 0.08323
1.0 0.5123 0.4967 0.5123 0.4967 0.1059 0.09821
0 0.7567 0.7567 0 (U 0 0
0.25 | 0.7626 0.7626 0.08162 | 0.08162 0 0
1.0 0.50 | 0.7733 0.7733 0.2526 | 0.2526 0 0
0.75 | 0.7873 0.7873 0.4960 0.4960 0 0
1.0 0.8035 0.8035 0.8035 0.8035 .0 0

§ 3.1, Consider the case where there is no dissociation in the flow, Then, using (2. 1), the local specific heat

flux to the surface of the body will be

07 80O VBngP_e h, —

1
Gle fa

ho)

(3.1)
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where the value g'(0) must be taken from (2.11).

§ 3.2, We shall find the heat flux for a body in a flow of air which at the outer edge of the boundary layer takes
the form of a five -component mixture of the dissociation products, O, N, NO, Oy, N. In order to be able to use the re-
sults of the preceding calculations, we shall assume that the reactions in the boundary layer are frozen, while at the
swiface they are infinitely fast, i, e., the surface is an ideal catalyst. This limitation Has.only a slight effect on the heat
flux [4], if the generalized Lewis -Semenov numbers are not very different from unity (0.5 < Lj < 2). For mixtures.com -
posed of the chemical elements O, N, C, Lj ~ 0, 8-1.5, The boundary conditions for the components, following from
the condition of conservation of O and N at the susface, will be ‘ ‘

i’ .
3 g lov (G — ) A+ Llo=0 (=0, N), I;=p¥, (3.2)
k=1 .

where 1. is the mass diffusion flow of the i-th component along the normal to the surface, V; is the diffusion rate pj, c;
are the density and mass concentration of the i-th component, myy is the fractionof element { in component k by
weight, the subscript 0 denotes conditions at the surface on the boundary layer side, .and the superscript (1) conditions at
the surface on the body side, and N is the number of components.

If the surface is maintained at a temperature below the dissociation threshold for a given pressure, then
¢0 (0) = o (N) = ¢o (NO) =0 ‘ ' (3.3)

where ‘¢i(O) is the concentration of the element O at the surface, and so on. Note that conditions (3. 2) are dependent by
virtue of the identities:

N N .
Yoo=1  NI,-o0. 3.4)
k=1 k=1

At the surface we get the recombination reactions

202 0y Q (02),  Q (Os) = 117973 cal/mole ,
IN2Ny--Q(No),  Q(Ns)= 225072 cal/mole,
04 NzNO+ Q(NO), Q(NO)=150043 cal/mole.

(3.5)

Since for five components there are two elements, three specific enthalpies of the components can be expressed in
terms of two independent enthalpies and the heats of reaction (3.5); for example,

‘ 0 N
h(0)=h(02) + 2503 ) I (N) =k (Ny) +——SL EN;
m (0) m(N) 1Q (02) Q (N») Q (NO)

h (NO) = oy (02 + ooy (N2 + T (NOy T+ Zm (ROY — “m (RO) (3.6)

where m(O) is the molecular weight of the element O, and so on. Then, using (3. 2)-(_3. 5), the specific heat flux to
the surface for injection of Oy and Ny may be expressed in the form

T Y | oT o ‘
q= (?\. ‘5‘&‘)0 — 2 o] o= Pova (o — By == <7\. _8?)0 — 2 By [ 14 07 (¢, — Ck(l))](]’_—_
, o= k=1 ' : (3.7
A or™ ) Q(0e) Q (Ng) [ Q () Q (N2) Q (NO)
=(Tp ‘5.17)0_5%5 10) =51 5y 1) = | T (R07 + I (NOY — (N Jr o)

where hT is the enthalpy of the ideal gas state of the mixture, i.e., dhT = cpdT, c; is the mass‘concentration of the i-th
component, h; is the specific enthalpy of the i-th component, including its heat of formation, hy is the enthalpy of the
mixture, and K1Y the enthalpy of the injected mixture. ‘

It is easy to see that if the heat capacities of the components are similar, which is true of a dissociating gas, the
function hT satisfies Eq. (1.5). Therefore

7 x aT A\ (Bele\" po . g, NI 4§ (1) B
(S = (), B i weo @ = VB g 7 — ) (3.8)

where g (0)s~'{, " is taken from the numerical solution or formula (2.11).

In order to compute the heat flux (3.7) due to the diffusion of the dissociation products of air'and their recombina -
tion.at-the surface, it is necessary to solve, jointly with system (2.2)-(2.4), the diffusion equations of the components,
which in the variables of (2. 1) are written in the form:
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US7leY + (@) e =0,  Sy=f (3.9)

Py
where the effective diffusion coefficients D; are found from the equations [1];
N N N
1 9’5( c; I-) :c.(r. I I ]k)
—_—= =1 —_* 7|+ ¢ SO (L AU S
- r (3.10)
P Dij ¢ 1 k21 321 Oy N Lo i

Here x, is the molar concentration, and Dij the binary diffusion coefficient. If we use the generalized analogy between
the processes of heat and mass transfer in a multicomponent boundary layer in the presence of injection [1, 5], it is suffi-
cient to be able to compute the coefficients D; at the surface. In fact, the generalized analogy between heat and mass
trensfer may be written in the form [1, 5]z

— I’i . 801 dT _ﬁp — C;o0 i
('——WT/Q[I )0 = (PDi *—a?)o / ().. 31; > Liom'heT_———- hoT N L; = S (3.11)
where
m=006 for a==0, 025 < Lin<h,
m=1 for —a=02—0.6  03<L<L3,
m=2 for —a=1, 0.6<Lp <14.

Then, with (3.8) and (3.11), expression (3,7) transforms to

2 (0 - 2
q= VB:leePe (1/1 {he—hn+ e (VL™ (0)— 110 %(ZZ% 4

. N e 0, N.) NO
+ e, (N) [L” (N)—1]()SLENE;+CE(NO) [L™ (NO)—1] [22((N(;)+2r2 ((\'(')') ?nENO;—” (3.12)
where
hy = h,T -+ hq (3.13)
Q (03) Q (N») Q (0s) Q (N») Q (NO) 7 _
ha==c (0) 57 02) e (N SRy '*“"B(NO)[zm (NO) T (NOY ~ i (NO) ]" (3.74

— 30686¢, (0) L 8038¢, (N) +- 716 ¢, (NO), [hq] = cal/s.

Physically, he represents the total enthalpy of the mixture at the outer edge of the boundary layer (stagnation en-
thalpy), and hg the dissociation energy of a unit mass of air, In order 1o compute the generalized Lewis-Semenov numbers
Lig = (pc Di/N)g in (3.12), it is necessary to know the effective diffusion coefficients at the surface. From (3.10), using

boundary conditions (3.3), we at once get:

1\ z{0y) 2 (Ny) i
(W)“D(i,o)+ DE Ny (=0 N, NO).

Hence, if, for simplicity, we drop the subscript 0, at the surface we have:

D (i’ 02)

PTG 0P G N — ey (T O N0 619

For two given pairs of components the ratios of the binary diffusion coefficients in (3.15) depend only on the tempera-
ture, since on the basis of the kinetic theory of gases [6]

_ V7w imy o + 6 20 () oo KT (3.16)
V 1jm + 1my (s; + 62 QU (1) T Vers

o
D,

where o; is the distance between molecules for which the interaction energy is zero, £; Is the absolute value of the maxi-
muim energy of artraction, k* is Boltzmann's constant, and QiLD* (ti;) is the mean reduced collision cross section. Since
the function 0{b? DA only slightly temperature -dependent [6], for two given pairs of components, ratio (3. 16) is prac-
tically unaffected by the temperature. In fact, from the tables given in [8], we have for 500, 1000, and 2000°K, re-

spectively:



D (0, Oy) . D(N, O)

7O M) = 1.038, 1.038, 1.040; DO, 0y = 1.007, 1.006, 1.006 ;
D (N, Op) D (NO, 0,)
DN = 043, -1.041; N oy =0 0.716, 0.718; , ‘
D (N, Np) 1.035; 1.043, 1.041 D (N, O3) 0.709, 0.716, 0.71 3.17)
D (NO, 0O2)
' ]—)—(mzo.gm, 1.020, 1.022 .
Hence for the same surface temperatures
L(N) _D(N) { 007 At 00382 (N3)
L(O) T D) T V10,0355 Ny
L(N 14-0.038z(Nz) -~ L(N) 1 + 0.040x (Na)

m—:l.OOBm, 7(0) =1.006mm, '(3-]8)

i.e., the generalized Lewis-Semenov numbers L(O) and L(N) differ by not more than 1%. Therefore we take
pepD (N, Ny) D (N, Ny) -1
Lo =L =L @)= (ZEe 1Yo 0)] =

. pch (N) N2)
= T2 1 — 0.040z (03)]

=L (N, Ny). (3.19)

Then, using the data of [7], we get L(A) =1.315 (500°K); 1.370 (L000°K ) 1.485 (2000°K). It is interesting to note that
in view of the similarity of the diffusion properties of the molecules O, and Ny, separation of the composition of the in-
cident flow at the surface of the body [1] has practically noeffect onthe values of L(A) at the surface, since 0. 040x(0y) =~

=~ 0, 01,
Finally, at 500, 1000, and 2000 K, respectively, we have:

L(NO) _ D(NO)
Id) DN

1 1 0.035z (N)
0,000 (Ng) =073

=0.709 -

L(NO) 1 4 0.043z (N,) 3.90
LAY = 0.716 1_} OOT)UWA,OJ'& ( )
L(NO) 1 - 0.041x (Ny)
L8 =070 T 5 0% (g =07
and the heat flux (3.12) can be written in the form:
) g (9) m m
g = V,Bxpepe 1 {he— ho + (LA — 1) by — T16c, (NO) L™ (A) (1 —0.73 ™} . (3.21)

The last term in (3. 21), proportional to the concentration of NO at the outer edge of the boundary layer, is less than

1% of the remaining terms, since in all cases ¢(NO) < 0.05. Therefore, although Lg(NO) is considerably different from
L(A) [cf. (3. 20)], the assumption that the processes of diffusion in dissociated air can be described with the aid of a single
coefficient of binary diffusion D(A, M) and thus with the aid of a single Lewis-Semenov number L(A), as for example in
[4, 9], does not lead to serious errors. Note that the appearance of nitric oxide reduces the diffusion energy transport effect
[cf. (8. 21)], since the heavier NO particles diffuse more slowly than the O and N atoms [D(NO) < D(A)]. Thus, of the
ten binary diffusion coefficients determining the diffusion processes in the five -componerit boundary layer of dissociated
air, by virtue of boundary conditions (3.3) and the asymptotic dependence of the derivatives on the concentrations at the
surface, the mass transfer processes depend on only seven: D (0, Oy), D (0, N,), D (N, O,),D (N, Ny), D(NO, 0,),

D(NO, N,), D(0,, N;). Moreover, the coefficient D (O, Ny) drops ot by virtue of boundary conditions (3.2). Of the re-
maining six binary diffusion coefficients only two: D (A, M) and D (M, M) are essentially different, and these enter into
the final expression for the heat flux (3. 21). Since ¢ (NO) « 1, in practice the diffusion heat transfer processes in five-
component air are determined by the single binary diffusion coefficient D (A, M). Inthe presence of additional components
with diffusion properties similar to those of air molecules, when boundary condmons (3. 2) are modified, we get a signifi-
cant dependence on the binary diffusion coefficient D (M, M) [5].

§ 3.3 Now let us consider the more complicated case of a body in a flow consisting of a mixture of CO, and molec-
ular pitrogen in an arbitrary ratio, At sufficiently high speeds in such an atmosphere, on passing through the shock wave
formed in front of the body, the flow dissociates and gives an eleven-component mixture of the dissociation products and
starting components: O, N, C, Op, Ng, NO, C;, G;, CO, CN, CO,, In this case, we can take as the independent reactions,

for example:



20202 + Q(02), Q(02) =117973; 3C2Cs + Q(Gs), Q(Cs) =320755;
2N 2 Np + Q(N2), Q(N2) =225072; C+ O 2CO+ Q(CO), Q(CO) =255790:
0+ Nz NOH-Q(NO), Q(NO)=150043; C--NZ2CN 4 Q(CN), Q(CN) =194121 ;
202 C +Q(C), Q(C) =143170;  C+0,2C0;-+Q (COy), Q(COz) = 263570,  (3-22)

where the heats of reaction Q are measured in cal/mole. Since these eleven components are formed by three chemical
elements, the partial specific enthalpies of eight of them can be expressed in terms of those of the other three [e.g. .
h(0y), h(Ny), and h(CQ,)] and the heats of reaction (3, 22) as follows: ‘

0 No)
h (0) =P (0) + g((oz)) , h (N)="h (N2) + SL((N:))
m (0) m (N) Q0) , Q(Na) _ Q(NO)
h(NO)zmh(OZ)‘l‘éno(NO)h (N2) +- erzzc((l)\f?) + (2272 (()1\7:0> "g‘ ((gé»
m (0) m (COs) )
R (CO) = — 7oy * (02 +Zr@oy (G0 + 5, ©0)~ T Zm(COy ~ m(Coy (3.23)

0] CO N
BCN)=— S (00) + "maR P (COD) + iy (N9

Q(COs) Q (Ne) Q (CN)
+ m (CN) + 2m (CN) ~ m (GN)

0 CO CO
B (C) = — ":1 ((Cj) B (Og) —’%—%((G—f) R (CO2) -+ Q—,f;(ci—)'
o) (CO: COs G
(G =— 2 0+ 2 0oy + LG — 2y
m (0) m (€09 Q(C0) _ QG

B (Cg) = — m ©) h(02)+—mh(co2)+ m () m (Cg) °

By virtue of the boundary conditions
N i
S my oo (6 — o) + Iilo =0, =0, N, G (3.24)
k=2

(¢;)o=0, (I =0, i == Ny, COq (3.25)

and relations (3.23), in the presence of hererogeneous recombination reactions of the dissociation products of the incident
flow and the injection of Ny and CO, gases the specific heat flux at the surface may be represented in the form:

N
orT or
9= (7” 3y—>0 B kZ gl g — 0900 (o — Ry = (}” Wy_>o -
=1
N A orT Q (02)

— 3 o U 20 (e — oo = (5 ), =T O 70

k=1
Q (Ny) Q (02) Q (Ny) Q (NO)
— I (N oy —”NO)[m N0y T Zm(NO) — m(NO) } -

Q(COy) , Q(0) Q(CO) Q (COy) Q(N:)  Q(CN)
—1(CO) [ m(CO) T Im(CO)  m(CO) ] -1 ‘~CN){ (@) T 2m O]~ 7 (CN) ] -
Q (COy) Q (COy) Q (Co) Q (CO,) Q (Gs).
—10%G 1@l Re - e |- 1ol e -] (©-20

Using (3.11) and (8. 8) and introducing the heat of dissociation of unit mass of the external flow

Q (0y) Q (Ng) Q (0g) Q (N2) Q (NO)
hg = ¢, (0) m(oz) +ce (N) m(NZ) + e (NO)[2m(N20) + T oy m(NO)] +

Q (COy) Q(0s) Q(CO) "Q (COy) Q(Nz) Q(CN)
+ ¢ (CO) { ™ ((:0§ T 50 " m (CO)] + . (CN) [ m(CN) T Im(CN)  m (C.N)] +
Q (GOs) Q (COy) Q (Cy) "Q(COs)  Q(Cy)
0@ e [ e ] O e ) J-
— 3686¢, (0) - 8038c, (N) - T8¢, (NO) - 2385¢, (CO) + 6999c, (CN) + 21964, (C) +
415909, (Co) 4 13054c, (Ca),  [hg] = cal/g, 3.27)




we can transform the heat flux (3. 26) as followss

o
~

Q (0y)

. r‘ — (0 ht
v -V 'ii_\.p(,{)e ﬁ- {}ze —ho - e, (OY [L" (O) — 1]y  (O0) -

m N Q No) m Q 02 Q N Q (N())
Fc. (N) [L (;\‘)—1]“777((1;12)-; e (NOY L (NO)—”“LZmEN())) Zm((Ng)”_m(N())
TQC0) | Q0  Q(CO)

|+ ecem ™ e —

+ ce (C0) [L™CO) — 1] [R ©0) T im0y T m(coy

L1QE0) 0N QENT, L m )
o llol‘im (CN) - Zm(CN) ~ “m(CN) ] e () L) — 1o - m (C) T

Q(CO) QG Q0 _ Q (Ca)] (3. 28)

m ()" m (Ca) -! e (C) (L™ () — 1]"[ m (C) m (Ca)

where hg = hg Ly hyg is the total enthalpy of the incident flow (stagnation enthalpy), and numerical values of the hears of
reaction must be taken from (3.22). In order to calculate the generalized Lewis-Semenov numbers in (3.28), we first find
the effective diffusion coefficients at the surface. From (3.10), using (3.25), we get

+ ¢, (Ca) (L™ (Cg) — 1] [

(%% =D, Ny

2

Whence, dropping the subscript 0 for simp‘liciry,

@ (COw)

-+ D, €O (i 5= Ny, COy) .

D ([7 NZ) . X
Dis= TD G N/ D (i CO9) — 1] 7 (G0 (i 5Ny, €Oy (3.29)
Thus, for Ty =500, 1000, 2000°K, respectively, we have:
Q_L(_)!._@ _ q a0=. ]_)@’_Ne.). 1.279. 1.25 269 .
DN, Ny = 0-991, 1.000, 0.995; D (GO, 00g = 1:279, 1.255, 1.262
DALy s, 1009, 1215 DINO M)y 040, 1.022, 1.025 ;
D (N, COy) = o= 1= el D(Cy, Ny 7 5049 bes 1.0
M = 1.945. 1.205. 1.225: w =:1.256, 1.240, 1.243 -
D (0, COp) = *+=12s 1oty demoy D (Ca, COp) =5 1-200, 1240, L
DO, Ny . a0 D (NO, Ny) ‘ ( ea (3.30)
D(C. Ny =089, 0.909, 0.907; D, N,y = 1:290, 1.238, 1.259
LG 900, 1190, 1.186; D(Can No) - a0, 1,968, 1.250
D(C, COp) = =V 1Y, 1100 D (Cy, COy) = o= 1209, L.
DINO, Ny o0 _ _ D (NO, Ny o
D(CO. Ny = 1-082, 1.013, 1.013; D0, Ny = 0-748, 0.734, 0.735 ;
D (NO, Ny ‘ L D (NO, Ny)
D(NO, COg) = 1.315, 1.261, 1.264, W =0.741, 0.734, 0.731 .
Therefore, for example, for Ty = 500°K we have:
L)  D(0) 1 4 0.222 (COs).
L(0)  D(0) 14 0.202 (COy)
0 = DE = 0,895 T 0.2z (CO3) =0.89 — 0.87
L(NO) _ D(NO) 1 +0.2792(COs)
L(CO) — D(Co) = 9321753155 (C0,) = 103 — 1.00
L(NO) _ D(NO) 14 0.256z (COy)
L) — D(G) — YM0TT0315z (Cop — 104100 (3.51)

L(NO) _ D(NO)

1 4- 0.32z (COy)

IG) — DG =&
L(NO) _ D(NO)

91703152 (Cop) = 1-29
1 40,245z (COs)

L—(O)—_ D (0) =0.7 8{m=0.75—0.7[
L (NO) D(NO) 1 4+ 0.22z (COy)
A) = D(N) :0.7/11m3m::0. T4 <0, 69,

Here the first values correspond to x (COp) - 0 and the second to x (CQOy) =1. By virtue of (3.30) we also get similar ratios
of the L numbers for other surface temperatures. It follows from (3. 31) that in this particular case there are really only
four significantly different L numbers:
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L), LA)=L©O) =L{N), LM) =L (NO)=L(CO)=L(CN) =L (Cy) L Cg) -

In each of these groups the L numbers differ by not more than 3% for any surface temperature., Moreover, upon dis-
sociation of CO, the concentration of Cy molecules is negligible, so that withour detriment to accuracy we can combine
L (C3) and L (M). Then the heat flux (3.28) can be reduced to the simpler form:

g—l(glz— {h, — ho - [L™ (A) — 1]oh, —

7=V Bp.re

PO, 0 Q000 I
HLm(A)] © Ty L7 ){ _LM(A)]><

QO) ., QM) _ QNO)\. . oy (QCON, Q(0)  Q(C0))
< e0 0 {wy+ 2 vy~ mor )+ e €O (e + ey oy )

_|_ ¢, (CN) ( Q (COQ) Q ( ") O (C'\)) + ¢ (Cz)< Q (CO‘Z) _ Q (Cz)) _Jl_

m (CN) 5 (CN) ~ m(CN) m (C) m (Cs)

CO, C m g (0

— L™ (A) [1

121964 ¢, (C) L™ (A) (1,15™ —1)— [T16¢c, (NO) + 2385¢, (CO) - 6999c, (GN) -

+15999c, (Ca) +-13054¢ , (C3)] + L™ (A) (1 — 0.73™)} (3.32)

where the value of ¢’ (0)/61;” must be taken from (2. 11) and that of h from (3. 27).

C,D(A) pepD (N, Ny) . pe,D (N, Ny

5 _ =
LA = =5 = T N/D (N, €O — D)7 (©05]] 711+ 0.225 (COa)] -39

Using the data of [7] on the parameters of the interaction forces for the Lenhard-Jones potential, we find from (3.33)
that for a given surface temperature the dependence of L (A) on x (CO,) is practically linear (Fig. 2).

In view of the low degree of separation of the starting composition of the in- '

cident flow at the surface and the relatively weak dependence of L (A) on x (COy), r/(;,%w#
in computing L (A) from (3.383) or Fig. 2 the value of x (COy) at the surface may . e }
be taken equal to its value in the incident flow (ahead of the shock wave). - e

Thus, taking values of L(A)from Fig. 2, we can compute the heat flux 5 ‘
to the surface from (3. 32) for any value of the injection parameter and for any ﬂ///!/ Ty,
degree of dissociation of the incident flow. For example, for the case of a flow ”Jg G2 o gk 06 1
consisting only of CO, completely dissociated to C and O atoms (Te > 6000 °K),
from (3.32) we get: Fig. 2

q= ]/E;_}I; g (,/2) {hy==ho+ [L™ (A) — 1] by -} 21964¢, (C) L™ (A)[1.15™ —1], (3.34)

hy = 3686, (0) + 21 964, (C) = 8671 cal/g, L(A)=1.69, To<1000°K .

We shall now compare the specific heat flux at the stagnation point of a body flying in CO, with the heat flux to the
same body flying in air. For simplicity we shall assume that there is no injection and, for comparison, that for both at-
mospheres Ty =const, hy = const, p, = const. Dividing (3.34) by {3. 21}, we get:

9c0,  TpeTn (VBahepo)co, (Gco2 )0'6 (leco?>0'm
9, %0 e T (Vipee =\ oF ) TN\,
{he —ho - [L%6(A) — 1] kg + 21964 ¢, (C) L (A) (1.15%6 — 1)}002
™= {he — ho + [LO® (A) =11 hg — T16 ¢, (NO) L® (A) (1 — 0,739}

For 107% < p < 10* bar, we haves
h,==500 1000 5000 10000 15000 cal/g

e
—— =117 1.16 108 1.02 1
7071



L(A)y=1.31, L{A)go,=1.69 for To<500°K .

We assume that at the outer edge of the boundary layer there is complete dissociation to C and O atoms in the carbon
dioxide and to O and N atoms in the air. Then

(ha)y =T037cal/g,  (ha)go,=8670callg, )= (ks + 3950)/(h, -+ 1223)

For example,
tr==1.27 for hy==900 cal/g, Tn=1.24 for he=50000 cal/g.

This increase in heat flux in CO, as compared with air is primarily associated with the higher values of the energy of
dissociation of unit mass of CO, and the Lewis-Semenov number and the somewhat greater mobility of the C and O atoms
as compared with the O and N atoms,. and, to a lesser extent, with the difference in the values of pp at the outer edge of
the boundary layer.

Using the generalized analogy between the heat and mass transfer coefficients obtained in [10] for a boundary layer
with an arbitrary pressure gradient, it is easy to conclude that the specific heat flux for flight in CO, gas will always be
greater than that for flight in air for any point on the exposed surface.
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